Some Important Cases

1. Multiple Optimal Solution;

Example: Solve the following LPP by graphical method

$$
\operatorname{Max}(Z)=100 x_{1}+40 x_{2}
$$

Subject to

$$
\begin{array}{r}
5 x_{1}+2 x_{2} \leq 1000 \\
3 x_{1}+2 x_{2} \leq 900 \\
x_{1}+2 x_{2} \leq 500
\end{array}
$$

and

$$
x_{1}, x_{2} \geq 0
$$

Solution:

- To represent the constraints graphically the inequalities are written as equalities.
- Every equation is represented by a straight line.
- To draw the lines, two points on each of the lines are found as indicated in the following table (intercepts);

Equation	x_{2} intercept when $x_{1}=0$	x_{1} intercept when $x_{2}=0$	Point (x, y) on the line
$5 x_{1}+2 x_{2}=1000$	$x_{2}=500$	$x_{1}=200$	$(0,500)(200,0)$
$3 x_{1}+2 x_{2}=900$	$x_{2}=450$	$x_{1}=300$	$(0,450)(300,0)$
$x_{1}+2 x_{2}=500$	$x_{2}=250$	$x_{1}=500$	$(0,250)(500,0)$

and $x_{1}=0, x_{1}$ axis $x_{2}=0, x_{2}$ axis. Plot each equation on the graph.

B is the point of intersection of lines $x_{1}+2 x_{2}=500,5 x_{1}+2 x_{2}=$ 1000 on solving we get $B=(125,187.5)$

Corner Points	Value of $Z=100 x_{1}+$ $40 x_{2}$
$A(0,250)$	10,000
$B(125$,	$20,000($ Max. Value)
$187.5)$	
$C(200,0)$	20,000 (Max. Value)

Therefore, the Maximum value of Z occurs at two vertices B and C gives the maximum value of Z. Thus, there are multiple optimum solution for the LPP.

2. Ubounded Solutions:

Example: Use graphical method to solve the following LPP.

$$
\operatorname{Max}(Z)=3 x_{1}+2 x_{2}
$$

Subject to

$$
\begin{aligned}
& 5 x_{1}+x_{2} \geq \\
& 10 x_{1}+x_{2} \geq \\
& 6 x_{1}+4 x_{2} \geq \\
& 12
\end{aligned}
$$

and

$$
x_{1}, x_{2} \geq 0
$$

Solution:

- To represent the constraints graphically the inequalities are written as equalities.
- Every equation is represented by a straight line.
- To draw the lines, two points on each of the lines are found as indicated in the following table (intercepts);

Equation	x_{2} intercept when $x_{1}=0$	x_{1} intercept when $x_{2}=0$	Point (x, y) on the line
$5 x_{1}+x_{2}=10$	$x_{2}=10$	$x_{1}=2$	$(0,10)(2,0)$
$x_{1}+x_{2}=6$	$x_{2}=6$	$x_{1}=6$	$(0,6)(6,0)$
$x_{1}+4 x_{2}=12$	$x_{2}=3$	$x_{1}=12$	$(0,3)(12,0)$

and $x_{1}=0, x_{1}$ axis $x_{2}=0, x_{2}$ axis. Plot each equation on the graph.

The feasible region is unbounded. Thus, the maximum value of Z occurs at infinity; hence, the problem has an unbounded solution.

3. No Feasible Solution:

Example: Use graphical method to solve the following LPP.

$$
\operatorname{Max}(Z)=x_{1}+x_{2}
$$

Subject to

$$
\begin{array}{r}
x_{1}+x_{2} \leq 1 \\
-3 x_{1}+x_{2} \leq 3
\end{array}
$$

and

$$
x_{1}, x_{2} \geq 0
$$

Solution:

- To represent the constraints graphically the inequalities are written as equalities.
- Every equation is represented by a straight line.
- To draw the lines, two points on each of the lines are found as indicated in the following table (intercepts);

Equation	x_{2} intercept when $x_{1}=0$	x_{1} intercept when $x_{2}=0$	Point (x, y) on the line
$x_{1}+x_{2}=1$	$x_{2}=1$	$x_{1}=1$	$(0,1)(1,0)$
$-3 x_{1}+x_{2}=3$	$x_{2}=3$	$x_{1}=-1$	$(0,3)(-1,0)$

and $x_{1}=0, x_{1}$ axis $x_{2}=0, x_{2}$ axis. Plot each equation on the graph.

In the above graph, there being no point (x_{1}, x_{2}) common to both the shaded regions. We cannot find a feasible region for this problem. So the problem can not be solved, hence, the problem has no solution.

